czwartek, 4 maja 2017

Zgasić Słońce wodą?

Czy możliwe by było zgasić Słońce polewając je wodą? Zupełnie - nie, ale na chwilę... teoretycznie... naginając trochę czasoprzestrzeń i logistykę...


Na pomysł tego wpisu naprowadziły mnie artykuły popularnonaukowe, które na podobne pytanie odpowiadały zawsze tak samo: dolewając do słońca wody tylko bardziej je rozgrzejemy.[1],[2].
Rozumowanie jest następujące - woda w wysokiej temperaturze gwiazdy będzie się rozkładać na wodór i tlen. Wodór jest dla gwiazdy paliwem, potrzebnym do przeprowadzenia reakcji termojądrowych, toteż dodanie nowej porcji tylko zwiększy ilość produkowanej energii. Ponadto dla dużych ilości wody masa słońca zostanie zwiększona na tyle, że wewnątrz wzrośnie ciśnienie i zwiększy się szybkość reakcji.
I otóż problem w tym, że w tym rozumowaniu kryją się pewne znaczące uproszczenia, które wpływają na końcową odpowiedź.

Słonce jest gwiazdą, a więc kulą gazu o tak dużej masie i grawitacji, że ciśnienie w jego jądrze dosłownie wciska jądra atomowe w siebie. Z połączenia się czterech jąder wodoru powstaje jedno jądro helu, o masie nieco mniejszej niż masa czterech jąder wodoru. Ta brakująca masa  jest zgodnie ze słynnym wzorem Einsteina zamieniana na energię. Ilość tej energii jest olbrzymia - mówi się że energia otrzymana z wodoru zawartego w szklance wody wystarczyłaby na pokrycie ziemskiego dziennego zapotrzebowania.
Jednak transport tej energii z jądra na zewnątrz gwiazdy jest bardziej skomplikowany i o wiele dłuższy niż by to się mogło wydawać.

Wnętrze gwiazdy wokół jądra jest złożone głownie z bardzo gęstej, mocno lub całkowicie zjonizowanej plazmy. Jest ona w dużym stopniu przezroczysta dla promieniowania, toteż transport energii odbywa się w niej głównie promieniście, poprzez światło, ultrafiolet, promieniowanie X i gamma. Jest to tak zwana strefa promienista, która w naszym Słońcu stanowi ok. 70% objętości,
Ze względu na ten duży stopień przezroczystości gradient temperatury w tej strefie jest względnie mały, mniejszy od gradientu adiabatycznego związanego z rosnącym w miarę głębokości ciśnieniem warstw gazu.
W takiej sytuacji nie następuje termiczna konwekcja, strefa ta nie jest więc dobrze wymieszana. Ze względu na dużą gęstość i obecność mimo wszystko nie całkiem zjonizowanych jonów, światło z jądra wiele razy jest pochłaniane i reemitowane, przez co jego druga do powierzchni trwa bardzo długo.

W miarę oddalania się od jądra plazma ochładza się i zwiększa się w niej udział jonów, zwłaszcza silnie pochłaniającego światło anionu wodorkowego. W efekcie w pewnym oddaleniu plazma staje się nieprzezroczysta, przekaz promienisty staje się nieefektywny, a główną rolę w przekazie energii przejmuje konwekcja, to jest ruch wznoszący gorętszych strumieni. Ta tak zwana strefa konwektywna zajmuje około 25% promienia naszego Słońca. To w tej strefie materia jest dobrze i dość równomiernie wymieszana.

Dopiero dalsze ochładzanie plazmy w zewnętrznych warstwach powoduje, że większość jonów i elektronów rekombinuje a głównym składnikiem staje się niezjonizowany gaz o wysokiej temperaturze. Jest on już na tyle przezroczysty, że wypromieniowywane przezeń światło wyrywa się w kosmos i po 8 minutach dociera do ziemi. Strefa ta, fotosfera, jest tym co widzimy jako powierzchnię słońca. Ma temperaturę około 5,6 tysięcy stopni, zdecydowanie mniej niż w jądrze (ok. 15 mln stopni).
Częste cykle pochłaniania i emisji w gęstym wnętrzu, oraz wolny transport energii w nieprzezroczystej strefie konwektywnej powodują, że fotony wytworzone w jądrze docierają do powierzchni słońca dopiero po czasie od dwustu tysięcy do miliona lat.

Sedno sprawy mogło wam umknąć w tych wyjaśnieniach, więc powtórzę tylko to co najważniejsze - tylko zewnętrzna strefa konwektywna jest dość dobrze wymieszana. W wewnętrznej, strefie promienistej, nie zachodzi mieszanie materii. A zatem dodatkowa porcja wodoru z wody zrzuconej na Słońce nie ma szans dotrzeć do jądra i wytworzyć więcej energii cieplnej. A zatem popularne tłumaczenia, że woda zrzucona na słońce je rozgrzeje, są błędne.
Również wzrost ciśnienia we wnętrzu gwiazdy nie spowoduje zbyt szybkiego wzrostu ilości energii wypromieniowywanej przez powierzchnię, bo jej transport trwa dość długo.

Pytanie zatem - czy gdyby użyć na prawdę dużej ilości wody i zrzucić na zewnętrzną warstwę słońca, dałoby się je choćby na chwilkę przygasić?

Całkowita moc promieniowania słońca to 3,86×1026 W. Tyleż więc dżuli energii wypromieniowuje całą powierzchnią w ciągu sekundy. Gdybyśmy zrzucili na słońce równocześnie tyle wody, aby to ciepło pochłonąć, może dałoby się na tą sekundę wystarczająco wychłodzić fotosferę, aby nie świeciła w zakresie widzialnym, a tym samym na chwilę przygasić słońce.
Zacznijmy wyliczenia od prześledzenia mechanizmu - zrzucamy na słońce wodę w formie lodowych brył, o temperaturze 0 stopni C. Ze względu na niskie ciśnienie ogrzewając się nie zamieni się ona w formę ciekłą tylko wysublimuje. Zamieni się zatem w parę która następnie zostanie ogrzana aż do temperatury termicznego rozkładu. Na koniec rozkład wody pochłonie kolejną porcję energii.
Do oszacowania ilości wody potrzebnej na pochłonięcie mocy promieniowania słońca potrzebne są pewne stałe fizyczne:


Entalpia sublimacji wody - 51,059 kj/mol[3]
Ciepło właściwe - 4,19 kj/kg*K (dla uproszczenia przyjmuję ciepło właściwe dla warunków standardowych, w rzeczywistości rośnie ono wraz z temperaturą)
temperatura rozkładu: wedle źródeł powyżej 4500 K woda ulega niemal całkowitemu rozkładowi na wodór i tlen a głównymi wykrywanymi składnikami są obojętne atomy i rodniki [4]
entalpia tworzenia - 285,8 kJ/mol

Przeliczmy więc to dla tony wody, zakładając że najpierw tona lodu sublimuje w temperaturze 0*C, potem powstała para ogrzewa się aż do 5 tysięcy stopni i następnie ulega rozkładowi na pierwiastki.

Tona lodu to 55555 moli wody. Na jej sublimację zużyje się (55 555*51,059) 2836583 kj energii. Ogrzanie par do 5000 K zużyje (55 555*4,19*4763) = 1108709468 kj energii
Rozkład zużyje (55 555*285,8) 15849842 kj energii
Razem 1127395893 kj czyli 1,1274*10^12.
Ponieważ należy pochłonąć 3,86×1026 J energii, potrzebnych jest około 300 000 000 000 000 ton lodu. Ilość ta rozłożona na powierzchni słońca (ok. 1520 mld km2) utworzyłaby warstwę grubą na 197 metrów. Już samo pokrycie słońca taką warstwą zatrzymałoby światło, przynajmniej na moment. Pochłonięcie jednosekundowej mocy promieniowania fotosfery miałoby jednak mniejszy wpływ niż całkowite przyciemnienie, bowiem spod spodu ochłodzonej warstwy promieniować będą warstwy głębsze i gorętsze. Niemniej już sama obecność dużej ilości jonów i rodników powstałych z rozkładu wody może spowodować częściowe osłabienie docierającego do ziemi światła.
----------
[1] http://www.what-if.pl/2013/03/krotka-pika-1.html
[2] http://wyborcza.pl/1,145452,18619223,kto-zgasi-slonce.html
[3] http://www1.lsbu.ac.uk/water/water_properties.html
[4]  https://www.researchgate.net/profile/Andrey_Samokhin/publication/226277308_Oxidizing_purification_of_water_using_thermal_plasma/links/54dd7e680cf28a3d93f96409.pdf?origin=publication_detail

1 komentarz:

  1. Myślę że pytający wyobrażają sobie "gaszenie Słońca wodą" jako rodzaj wielkieo basenu w którym gwiazdę zanurzamy, co powoduje jej schłodzenie , a tym samym "przygaszenie". Nie bardzo mi się chce to liczyć ale gdyby z równań wyeliminować grawitację (lub rozrzedzić Słońce tak by ustała reakcja termonuklearna), to podejrzewam iż efekt był by pozytywny, czyli gwiazda by zgasła. W sytuacji działającej grawitacji masa wody potrzebna do eksperymentu, sama pod wpływem własnej masy przekształciła by się w gwiazdę. ;)

    OdpowiedzUsuń